Abstract

Abstract: Many non-destructive optical testing methods are currently used for material research, providing various information about material parameters. At RECENDT, a multimodal experimental setup has been designed that combines terahertz (THz) spectroscopy, optical coherence tomography (OCT), infrared (IR), and Raman spectroscopy with a tensile test stage. This setup aims to gather material information such as crystallinity and optical parameters of high-density polyethylene (HDPE) during a tensile test. The setup compares common IR and Raman spectroscopy and the less common optical methods THz and OCT. Complementarity is achieved through different frequency ranges and measurement approaches, resulting in different measured optical material parameters and depths. During tensile testing, HDPE samples with varying crystallinity were analysed, and the determined optical parameters such as refractive index, birefringence, scattering coefficient of decay, and penetration depth can be correlated with the change in crystallinity. These findings demonstrate that the optical methods and their outcomes can be interconnected. With further optimization of the experimental setup, it would be possible to observe the alignment of fibres in fibre composite panels and the stress distribution of polymers effectively. This opens interesting possibilities for polymer characterization in the future, including quality control during moulding processes and material testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.