Abstract
To improve the effect of multimodal negative sentiment recognition of online public opinion on public health emergencies, we constructed a novel multimodal fine-grained negative sentiment recognition model based on graph convolutional networks (GCN) and ensemble learning. This model comprises BERT and ViT-based multimodal feature representation, GCN-based feature fusion, multiple classifiers, and ensemble learning-based decision fusion. Firstly, the image-text data about COVID-19 is collected from Sina Weibo, and the text and image features are extracted through BERT and ViT, respectively. Secondly, the image-text fused features are generated through GCN in the constructed microblog graph. Finally, AdaBoost is trained to decide the final sentiments recognized by the best classifiers in image, text, and image-text fused features. The results show that the F1-score of this model is 84.13% in sentiment polarity recognition and 82.06% in fine-grained negative sentiment recognition, improved by 4.13% and 7.55% compared to the optimal recognition effect of image-text feature fusion, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.