Abstract

Chemotherapy remains the most essential treatment for prostate cancer, but multidrug resistance (MDR) contributes to chemotherapy failure and tumor-related deaths. The overexpression of P-glycoprotein (P-gp) is one of the main mechanisms behind MDR. Here, this work reports a multimodal nanoplatform with a reactive oxygen species (ROS) cascade for gas therapy/ferroptosis/chemotherapy in reversing MDR. The nanoplatform disassembles when responding to intracellular ROS and exerts three main functions: First, nitric oxide (NO) targeted delivery can reverse MDR by downregulating P-gp expression and inhibiting mitochondrial function. Second, ferrocene-induced ferroptosis breaks the redox balance in the tumor intracellular microenvironment and synergistically acts against the tumor. Third, the release of paclitaxel (PTX) is precisely controlled in situ in the tumor for chemotherapy that avoids damage to normal tissues. Excitingly, this multimodal nanoplatform is a promising weapon for reversing MDR and may provide a pioneering paradigm for synergetic cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.