Abstract

This paper proposed a method to fuse multimodal medical images using the adaptive pulse-coupled neural networks (PCNN), which was optimized by the quantum-behaved particle swarm optimization (QPSO) algorithm. In this fusion model, two source images, A and B, were first processed by the QPSO-PCNN model, respectively. Through the QPSO algorithm, the PCNN model could find the optimal parameters for the source images, A and B. To improve the efficiency and quality of QPSO, three evaluation criteria, image entropy (EN), average gradient (AG) and spatial frequency (SF) were selected as the hybrid fitness function. Then, the output of the fusion model was obtained by the judgment factor according to the firing maps of two source images, which maybe was the pixel value of the image A, or that of the image B, or the tradeoff value of them. Based on the output of the fusion model, the fused image was gained. Finally, we used five pairs of multimodal medical images as experimental data to test and verify the proposed method. Furthermore, the mutual information (MI), structural similarity (SSIM), image entropy (EN), etc. were used to judge the performances of different methods. The experimental results illustrated that the proposed method exhibited better performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.