Abstract

Disease knowledge graphs have emerged as a powerful tool for artificial intelligence to connect, organize, and access diverse information about diseases. Relations between disease concepts are often distributed across multiple datasets, including unstructured plain text datasets and incomplete disease knowledge graphs. Extracting disease relations from multimodal data sources is thus crucial for constructing accurate and comprehensive disease knowledge graphs. We introduce REMAP, a multimodal approach for disease relation extraction. The REMAP machine learning approach jointly embeds a partial, incomplete knowledge graph and a medical language dataset into a compact latent vector space, aligning the multimodal embeddings for optimal disease relation extraction. Additionally, REMAP utilizes a decoupled model structure to enable inference in single-modal data, which can be applied under missing modality scenarios. We apply the REMAP approach to a disease knowledge graph with 96,913 relations and a text dataset of 1.24 million sentences. On a dataset annotated by human experts, REMAP improves language-based disease relation extraction by 10.0% (accuracy) and 17.2% (F1-score) by fusing disease knowledge graphs with language information. Furthermore, REMAP leverages text information to recommend new relationships in the knowledge graph, outperforming graph-based methods by 8.4% (accuracy) and 10.4% (F1-score). REMAP is a flexible multimodal approach for extracting disease relations by fusing structured knowledge and language information. This approach provides a powerful model to easily find, access, and evaluate relations between disease concepts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.