Abstract

The underlying pathophysiology of status epilepticus (SE) remains mostly invisible to the clinician in the intensive care unit (ICU) setting. In animal studies associated hemodynamic and brain neurochemical changes have been well described. In the last decade, bedside invasive neuromonitoring techniques allow the assessments of changes in focal and global cerebral physiology associated with ictal activity on the tissue level in humans. Recent studies demonstrate that laboratory research insufficiently replicates the complexity of the human condition. Herein we summarize the current knowledge gained from human studies integrating cortical electrographic and brain tissue metabolic and hemodynamic information into the current pathophysiologic concept of SE in humans. With increasing experience gained by the use of extended neuromonitoring, we are more and more able to understand associated hemodynamic and brain neurochemical changes in patients with SE. In the future, this information can potentially provide integrated pathophysiologic end points into SE treatment concepts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.