Abstract
The etiology of neuropsychiatric disorders involves complex biological processes at different omics layers, such as genomics, transcriptomics, epigenetics, proteomics, and metabolomics. The advent of high-throughput technology, as well as the availability of large open-source datasets, has ushered in a new era in system biology, necessitating the integration of various types of omics data. The complexity of biological mechanisms, the limitations of integrative strategies, and the heterogeneity of multi-omics data have all presented significant challenges to computational scientists. In comparison to early and late integration, intermediate integration may transform each data type into appropriate intermediate representations using various data transformation techniques, allowing it to capture more complementary information contained in each omics and highlight new interactions across omics layers. Here, we reviewed multi-modal intermediate integrative techniques based on component analysis, matrix factorization, similarity network, multiple kernel learning, Bayesian network, artificial neural networks, and graph transformation, as well as their applications in neuropsychiatric domains. We depicted advancements in these approaches and compared the strengths and weaknesses of each method examined. We believe that our findings will aid researchers in their understanding of the transformation and integration of multi-omics data in neuropsychiatric disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and structural biotechnology journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.