Abstract

Accurate human path forecasting in complex and crowded scenarios is critical for collision avoidance of autonomous driving and social robots navigation. It still remains as a challenging problem because of dynamic human interaction and intrinsic multimodality of human motion. Given the observation, there is a rich set of plausible ways for an agent to walk through the circumstance. To address those issues, we propose a spatio-temporal model that can aggregate the information from socially interacting agents and capture the multimodality of the motion patterns. We use mixture density functions to describe the human path and predict the distribution of future paths with explicit density. To integrate more factors to model interacting people, we further introduce a coordinate transformation to represent the relative motion between people. Extensive experiments over several trajectory prediction benchmarks demonstrate that our method is able to forecast various plausible futures in complex scenarios and achieves state-of-the-art performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.