Abstract

The floor constitutes one of the largest areas within a building with which users interact most frequently in daily activities. Employing floor sensors is vital for smart-building digital twins, wherein triboelectric nanogenerators demonstrate wide application potential due to their good performance and self-powering characteristics. However, their sensing stability, reliability, and multimodality require further enhancement to meet the rapidly evolving demands. Thus, this work introduces a multimodal intelligent flooring system, implementing a 4× 4 floor array for multimodal information detection (including position, pressure, material, user identity, and activity) and human-machine interactions. The floor unit incorporates a hybrid structure of triboelectric pressure sensors and a top-surface material sensor, facilitating linear and enhanced sensitivity across a wide pressure range (0-800 N), alongside the material recognition capability. The floor array is implemented by an advanced output-ratio method with minimalist output channels, which is insensitive to environmental factors such as humidity and temperature. In addition to multimodal sensing, energy harvesting is co-designed with the pressure sensors for scavenging waste energy to power smart-building sensor nodes. This developed flooring system enables multimodal sensing, energy harvesting, and smart-sport interactions in smart buildings, greatly expanding the floor sensing scenarios and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.