Abstract

Despite recent advances in tremor and dystonia classification, it remains difficult to discriminate essential tremor from dystonic tremor as they are similar in appearance and no biomarker exists. Further, tremor can appear in the same or a different body part than the dystonia. The aim of the current study was to better understand the differential pathophysiology of these tremors.We designed a cross-sectional case-control study and recruited 16 patients with essential tremor, 16 patients with dystonic tremor, and 17 age-matched healthy volunteers. We used multi-modal imaging combining resting-state functional MRI, diffusion tensor imaging, and magnetic resonance spectroscopy. We measured functional connectivity of resting-state fMRI to assess connectivity in the tremor network, fractional anisotropy and mean diffusivity with diffusion tensor imaging, and GABA+, Glutamate/Glutamine, Choline, and N-Acetylaspartate with spectroscopy (adjusted to Creatine).Our results showed reduced functional connectivity of resting-state fMRI between the cerebellum and dentate nucleus bilaterally for the essential tremor group, but not the dystonic tremor group, compared to healthy volunteers. There was higher fractional anisotropy in the middle cerebellar peduncle bilaterally for the dystonic tremor group compared to the essential tremor group as well as for essential tremor group compared to healthy volunteers. There was also higher fractional anisotropy in the red nucleus and corticospinal tract for essential tremor and dystonic tremor groups compared to healthy volunteers. We also showed reduced mean diffusivity in the cerebellum of both essential tremor and dystonic tremor groups compared to healthy volunteers. Finally, we found elevated GABA+/Cr in the cerebellum of the essential tremor and dystonic tremor groups compared to healthy volunteers, but no difference emerged between essential tremor and dystonic tremor groups. We did not find group differences in the other metabolites.Our results indicate cerebellar alterations in essential tremor and dystonic tremor patients compared to healthy volunteers, and further changes in the cerebellum network for the dystonic tremor patients. suggesting that the cerebellum is affected differently in both tremors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call