Abstract

Alzheimer's disease (AD) is characterized by significant cerebral dysfunction, including increased amyloid deposition, gray matter atrophy, and changes in brain function. The involvement of highly connected network hubs, known as the "rich club," in the pathology of the disease remains inconclusive despite previous research efforts. In this study, we aimed to systematically assess the link between the rich club and AD using a multimodal neuroimaging approach. We employed network analyses of diffusion magnetic resonance imaging (MRI), longitudinal assessments of gray matter atrophy, amyloid deposition measurements using positron emission tomography (PET) imaging, and meta-analytic data on functional activation differences. Our study focused on evaluating the role of both the structural brain network's core and extended rich club regions in individuals with mild cognitive impairment (MCI) and those diagnosed with AD. Our findings revealed that structural rich club regions exhibited accelerated gray matter atrophy and increased amyloid deposition in both MCI and AD. Importantly, these regions remained unaffected by altered functional activation patterns observed outside the core rich club regions. These results shed light on the connection between two major AD biomarkers and the rich club, providing valuable insights into AD as a potential disconnection syndrome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.