Abstract
A challenging task for the biological neural signal-based human-exoskeleton interface is to achieve accurate lower limb movement prediction of patients with hemiplegia in rehabilitation training scenarios. The human-exoskeleton interface based on single-modal biological signals such as electroencephalogram (EEG) is currently not mature in predicting movements, due to its unreliability. The multimodal human-exoskeleton interface is a very novel solution to this problem. This kind of interface normally combines the EEG signal with surface electromyography (sEMG) signal. However, their use for the lower limb movement prediction is still limited—the connection between sEMG and EEG signals and the deep feature fusion between them are ignored. In this article, a Dense con-attention mechanism-based Multimodal Enhance Fusion Network (DMEFNet) is proposed for predicting lower limb movement of patients with hemiplegia. The DMEFNet introduces the con-attention structure to extract the common attention between sEMG and EEG signal features. To verify the effectiveness of DMEFNet, an sEMG and EEG data acquisition experiment and an incomplete asynchronous data collection paradigm are designed. The experimental results show that DMEFNet has a good movement prediction performance in both within-subject and cross-subject situations, reaching an accuracy of 82.96 and 88.44%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.