Abstract
The use of graph theory for analyzing network-like data has gained central importance with the rise of the Web 2.0. However, many graph-based techniques are not well-disseminated and neither explored at their full potential, what might depend on a complimentary approach achieved with the combination of multiple techniques. This paper describes the systematic use of graph-based techniques of different types (multimodal) combining the resultant analytical insights around a common domain, the Digital Bibliography & Library Project (DBLP). To do so, we introduce an analytical ensemble based on statistical (degree, and weakly-connected components distribution), topological (average clustering coefficient, and effective diameter evolution), algorithmic (link prediction/machine learning), and algebraic techniques to inspect non-evident features of DBLP at the same time that we interpret the heterogeneous discoveries found along the work. As a result, we have put together a set of techniques demonstrating over DBLP what we call multimodal analysis, an innovative process of information understanding that demands a wide technical knowledge and a deep understanding of the data domain. We expect that our methodology and our findings will foster other multimodal analyses and also that they will bring light over the Computer Science research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.