Abstract

With rapidly evolving high-throughput technologies and consistently decreasing costs, collecting multimodal omics data in large-scale studies has become feasible. Although studying multiomics provides a new comprehensive approach in understanding the complex biological mechanisms of human diseases, the high dimensionality of omics data and the complexity of the interactions among various omics levels in contributing to disease phenotypes present tremendous analytical challenges. There is a great need of novel analytical methods to address these challenges and to facilitate multiomics analyses. In this paper, we propose a multimodal functional deep learning (MFDL) method for the analysis of high-dimensional multiomics data. The MFDL method models the complex relationships between multiomics variants and disease phenotypes through the hierarchical structure of deep neural networks and handles high-dimensional omics data using the functional data analysis technique. Furthermore, MFDL leverages the structure of the multimodal model to capture interactions between different types of omics data. Through simulation studies and real-data applications, we demonstrate the advantages of MFDL in terms of prediction accuracy and its robustness to the high dimensionality and noise within the data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.