Abstract
Deep learning has shown great potential in smart agriculture, especially in the field of pest recognition. However, existing methods require large datasets and do not exploit the semantic associations between multimodal data. To address these problems, this paper proposes a multimodal fine-grained transformer (MMFGT) model, a novel pest recognition method that improves three aspects of transformer architecture to meet the needs of few-shot pest recognition. On the one hand, the MMFGT uses self-supervised learning to extend the transformer structure to extract target features using contrastive learning to reduce the reliance on data volume. On the other hand, fine-grained recognition is integrated into the MMFGT to focus attention on finely differentiated areas of pest images to improve recognition accuracy. In addition, the MMFGT further improves the performance in pest recognition by using the joint multimodal information from the pest’s image and natural language description. Extensive experimental results demonstrate that the MMFGT obtains more competitive results compared to other excellent models, such as ResNet, ViT, SwinT, DINO, and EsViT, in pest recognition tasks, with recognition accuracy up to 98.12% and achieving 5.92% higher accuracy compared to the state-of-the-art DINO method for the baseline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.