Abstract

New research into human-computer interaction seeks to consider the consumer's emotional status to provide a seamless human-computer interface. This would make it possible for people to survive and be used in widespread fields, including education and medicine. Multiple techniques can be defined through human feelings, including expressions, facial images, physiological signs, and neuroimaging strategies. This paper presents a review of emotional recognition of multimodal signals using deep learning and comparing their applications based on current studies. Multimodal affective computing systems are studied alongside unimodal solutions as they offer higher accuracy of classification. Accuracy varies according to the number of emotions observed, features extracted, classification system and database consistency. Numerous theories on the methodology of emotional detection and recent emotional science address the following topics. This would encourage studies to understand better physiological signals of the current state of the science and its emotional awareness problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.