Abstract
Active electrocorticogram (ECoG) electrodes can amplify weak electrophysiological signals and improve anti-interference ability; however, traditional active electrodes are opaque and cannot realize photoelectric collaborative observation. In this study, an active and fully transparent ECoG array based on zinc oxide thin-film transistors (ZnO TFTs) is developed as a local neural signal amplifier for electrophysiological monitoring. The transparency of the proposed ECoG array is up to 85%, which is superior to that of the previously reported active electrode arrays. Various electrical characterizations have demonstrated its ability to record electrophysiological signals with a higher signal-to-noise ratio of 19.9dB compared to the Au grid (13.2dB). The high transparency of the ZnO-TFT electrode array allows the concurrent collection of high-quality electrophysiological signals (32.2dB) under direct optical stimulation of the optogenetic mice brain. The ECoG array can also work under 7-Tesla magnetic resonance imaging to record local brain signals without affecting brain tissue imaging. As the most transparent active ECoG array to date, it provides a powerful multimodal tool for brain observation, including recording brain activity under synchronized optical modulation and 7-Tesla magnetic resonance imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.