Abstract
The lengthy process through which laser-textured surfaces transform from hydrophilic to hydrophobic severely restricts their practical applications. Accurately predicting the wettability evolution curve is crucial; however, developing a reliable prediction model remains challenging. Herein, a data-driven multimodal deep-learning framework was developed, in which multimodal data of micro/nanostructure morphology images, composition distribution images, and time information are effectively coupled and fed into a convolutional neural network (CNN). Rich data input and in-depth data mining make the framework more robust, achieving accurate prediction of the wettability evolution curves of various typical micro/nanostructures. Additionally, accurate prediction of input images with varying magnifications and untrained laser-textured surfaces demonstrates the generalizability of the multimodal CNN framework. The visualization results of the convolution layer confirmed the rationality of the information learned by the model. Additionally, the proposed multimodal CNN framework was successfully utilized to investigate the optimization process. Further, a laser-textured surface with a shorter evolution period and a larger final contact angle was realized. The proposed multimodal CNN framework offers an efficient and cost-effective method for predicting the wettability evolution curves and exploring the optimization processes, enhancing the application potential of laser micro/nanofabrication of superhydrophobic surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.