Abstract
Millions of multimodal posts are uploaded, shared, viewed and liked every day in different social networks, where users express their opinions about different items such as products and places. While, some user posts become popular, others are ignored. Even different posts related to the same items shared by different users receive different number of likes and views. Existing research on popularity prediction aggregate all user posts related to different items without considering the preferences of individual user for the items in training a popularity model. This often results in limited success. We hypothesize that popularity of posts differs from one user to the other user, one item to the other items, and posts related to the similar users or similar items may be received the same number of likes. In this paper, we present an approach for predicting the popularity of user posts by considering preferences of individual users to the items. We factorize the popularity of posts to the user-item-context and propose a multimodal context-aware recommender for predicting the popularity of posts. Using our proposal we have the ability of predicting the popularity of posts related to different items which are shared by a specific user. Moreover we are able to predict the popularity of posts shared with different users for a specific item. We evaluate our approach on an Instagram user posts dataset with over 600K posts in total related to different touristic places, as items, in The Netherlands for the task of popularity prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.