Abstract
Many applications of nanometer- and micrometer-sized particles include their surface functionalization with linkers, sensor molecules, and analyte recognition moieties like (bio)ligands. This requires knowledge of the chemical nature and number of surface groups accessible for subsequent coupling reactions. Particularly attractive for the quantification of these groups are spectrophotometric and fluorometric assays, which can be read out with simple instrumentation. In this respect, we present here a novel family of cleavable spectrophotometric and multimodal reporters for conjugatable amino and carboxyl surface groups on nano- and microparticles. This allows determination of particle-bound labels, unbound reporters in the supernatant, and reporters cleaved off from the particle surface, as well as the remaining thiol groups on particle, by spectrophotometry and inductively coupled optical emission spectrometry (32S ICP-OES). Comparison of the performance of these cleavable reporters with conductometry and conventional labels, utilizing changes in intensity or color of absorption or emission, underlines the analytical potential of this versatile concept which elegantly circumvents signal distortions by scattering and encoding dyes and enables straightforward validation by method comparison.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.