Abstract
BackgroundIf identifying target species is challenging regarding chemical speciation, non-target species present even more significant difficulties. Thus, to improve the performance of the methods, multimodal online coupling involving atomic and molecular mass spectrometry (LC-ICP-MS-ESI-HRMS) is an advance in this direction. Then, this kind of coupling is highlighted in this Tutorial Review, as well as some references emphasizing its potentialities and possible limitations. Some crucial definitions of speciomics, chemical speciation, and others are also included. ResultsThe main parameters that influence the coupling of an inductively coupled plasma mass spectrometer with a high-resolution mass spectrometer through a chromatographic system are critically commented on, and a diversity of results is demonstrated by using a turtle liver (Caretta caretta) as a model sample. The parameters were discussed in detail in a step-by-step manner: ICP-MS/MS acquisition modes and instrumental parameters, HRMS acquisition modes and instrumental parameters, and data processing strategies (Full MS – Top N, All Ion Fragmentation – AIF, Parallel Reaction Monitoring – PRM). Additionally, this Tutorial Review also demonstrates a diversity of results through target and non-target analysis. SignificanceConstituting a guide for those who are interested in a non-targeted analysis of molecular non-volatile/semi-volatile compounds, this Tutorial Review presents trans and multidisciplinary proposals for those communities involving chemistry, biochemistry, medicine, biology, environmental, pharmaceutical, food safety, and omics, among others, where metal (also metalloids or semi-metals and non-metals or heteroatoms) and molecular species are necessary for a good understanding of the studied system. This kind of coupling also allows the discovery of novel biological active elemental species in diverse matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.