Abstract

Seed coatings improve germination and offer higher crop yields through a blend of active ingredients (such as insecticides and fungicides), polymers, waxes, fillers, and pigments. To reach their full potential, fundamental formulation challenges bridging structure and function need to be addressed. In some instances, during industrial-volume packing and transportation, coated seeds do not flow well through elevators, conveyers, and applicators, which may reduce yield and add cost. In this work, we illustrate a combinatorial chemical imaging approach to study seed coatings at the microscale to link chemical and physical properties responsible for low seed flowability. The local chemical composition was examined using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and at comparable length scales, the local adhesive properties were examined using atomic force microscopy (AFM) force volume mapping. The link between the chemical and the adhesive properties was established by non-negative matrix factorization (NMF). The correlative multimodal imaging approach developed here utilizing AFM force volume mapping, ToF-SIMS chemical mapping, and data analytics offers a path for linking function with localized chemistry when investigating multicomponent soft material systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.