Abstract

Demand for materials that mechanically replicate native tissue has driven development and characterization of various new biomaterials. However, a consequence of materials and characterization technique diversity is a lack of consensus within the field, with no clear way to compare values measured via different modalities. This likely contributes to the difficulty in replicating findings across the research community; recent evidence suggests that different modalities do not yield the same mechanical measurements within a material, and direct comparisons cannot be made across different testing platforms. Herein, we examine whether “material properties” are characterization modality-specific by analyzing the elastic moduli determined by five typical biomaterial mechanical characterization techniques: unconfined-compression, tensiometry, rheometry, and micro-indentation at the macroscopic level, and microscopically using nanoindentation. These analyses were performed in two different polymeric gels frequently used for biological applications, polydimethylsiloxane (PDMS) and agarose. Each was fabricated to span a range of moduli, from physiologic to supraphysiologic values. All five techniques identified the same overall trend within each material group, supporting their ability to appreciate relative moduli differences. However, significant differences were found across modalities, illustrating a difference in absolute moduli values, and thereby precluding direct comparison of measurements from different characterization modalities. These observed differences may depend on material compliance, viscoelasticity, and microstructure. While determining the underlying mechanism(s) of these differences was beyond the scope of this work, these results demonstrate how each modality affects the measured moduli of the same material, and the sensitivity of each modality to changes in sample material composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.