Abstract

Despite rapid advances in the study of brain–computer interfaces (BCIs) in recent decades, two fundamental challenges, namely, improvement of target detection performance and multidimensional control, continue to be major barriers for further development and applications. In this paper, we review the recent progress in multimodal BCIs (also called hybrid BCIs), which may provide potential solutions for addressing these challenges. In particular, improved target detection can be achieved by developing multimodal BCIs that utilize multiple brain patterns, multimodal signals, or multisensory stimuli. Furthermore, multidimensional object control can be accomplished by generating multiple control signals from different brain patterns or signal modalities. Here, we highlight several representative multimodal BCI systems by analyzing their paradigm designs, detection/control methods, and experimental results. To demonstrate their practicality, we report several initial clinical applications of these multimodal BCI systems, including awareness evaluation/detection in patients with disorder of consciousness (DOC). As an evolving research area, the study of multimodal BCIs is increasingly requiring more synergetic efforts from multiple disciplines for the exploration of the underlying brain mechanisms, the design of new effective paradigms and means of neurofeedback, and the expansion of the clinical applications of these systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.