Abstract

PurposeThe present study investigates a multimodal imaging assessment of glymphatic function and its association with brain amyloid-beta deposition. MethodsTwo brain CSF clearance measures (vCSF and DTI-ALPS) were derived from dynamic PET and MR diffusion tensor imaging (DTI) for 50 subjects, 24/50 were Aβ positive (Aβ+). T1W, T2W, DTI, T2FLAIR, and 11C-PiB and 18F-MK-6240 PET were acquired. Multivariate linear regression models were assessed with both vCSF and DTI-ALPS as independent variables and brain Aβ as the dependent variable. Three types of models were evaluated, including the vCSF-only model, the ALPS-only model and the vCSF+ALPS combined model. Models were applied to the whole group, and Aβ subgroups. All analyses were controlled for age, gender, and intracranial volume. ResultsSample demographics (N=50) include 20 males and 30 females with a mean age of 69.30 (sd=8.55). Our results show that the combination of vCSF and ALPS associates with Aβ deposition (p < 0.05, R2 = 0.575) better than either vCSF (p < 0.05, R2 = 0.431) or ALPS (p < 0.05, R2 = 0.372) alone in the Aβ+ group. We observed similar results in whole-group analyses (combined model: p < 0.05, R2 = 0.287; vCSF model: p <0.05, R2 = 0.175; ALPS model: p < 0.05, R2 = 0.196) with less significance. Our data also showed that vCSF has higher correlation (r = -0.548) in subjects with mild Aβ deposition and DTI-ALPS has higher correlation (r=-0.451) with severe Aβ deposition subjects. ConclusionThe regression model with both vCSF and DTI-ALPS is better associated with brain Aβ deposition. These two independent brain clearance measures may better explain the variation in Aβ deposition than either term individually. Our results suggest that vCSF and DTI-ALPS reflect complementary aspects of brain clearance functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call