Abstract

ObjectivesTo assess the stand-alone and combined performance of artificial intelligence (AI) detection systems for digital mammography (DM) and automated 3D breast ultrasound (ABUS) in detecting breast cancer in women with dense breasts.Methods430 paired cases of DM and ABUS examinations from a Asian population with dense breasts were retrospectively collected. All cases were analyzed by two AI systems, one for DM exams and one for ABUS exams. A selected subset (n = 152) was read by four radiologists. The performance of AI systems was based on analysis of the area under the receiver operating characteristic curve (AUC). The maximum Youden’s index and its associated sensitivity and specificity were also reported for each AI systems. Detection performance of human readers in the subcohort of the reader study was measured in terms of sensitivity and specificity.ResultsThe performance of the AI systems in a multi-modal setting was significantly better when the weights of AI-DM and AI-ABUS were 0.25 and 0.75, respectively, than each system individually in a single-modal setting (AUC-AI-Multimodal = 0.865; AUC-AI-DM = 0.832, p = 0.026; AUC-AI-ABUS = 0.841, p = 0.041). The maximum Youden’s index for AI-Multimodal was 0.707 (sensitivity = 79.4%, specificity = 91.2%). In the subcohort that underwent human reading, the panel of four readers achieved a sensitivity of 93.2% and specificity of 32.7%. AI-multimodal achieves superior or equal sensitivity as single human readers at the same specificity operating points on the ROC curve.ConclusionMultimodal (ABUS + DM) AI systems for detecting breast cancer in women with dense breasts are a potential solution for breast screening in radiologist-scarce regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.