Abstract

This study introduced and demonstrated a new method to investigate the repair process of bone defects using micro- and macroporous beta-tricalcium phosphate (β-TCP) substitutes. Specifically, the new method combined and aligned histology, SEM, and preimplantation microcomputed tomography (mCT) data to accurately characterize tissue phases found in biopsies, and thus better understand the bone repair process. The results included (a) the exact fraction of ceramic remnants (CR); (b) the fraction of ceramic resorbed and substituted by bone (CSB); and (c) the fraction of ceramic resorbed and not substituted by bone (CNSB). The new method allowed in particular the detection and quantification of mineralized tissues within the 1-10 µm micropores of the ceramic ("micro-bone"). The utility of the new method was demonstrated by applying it on biopsies of two β-tricalcium phosphate bone substitute groups with two differing macropore sizes implanted in an ovine model for 6weeks. The total bone deposition and ceramic resorption of the two substitute groups, having macropore sizes of 510 and 1220 μm, were 25.1 ± 8.1% and 67.5 ± 3.2%, and 24.4 ± 4.1% and 61.4 ± 6.5% for the group having the larger pore size. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1567-1577, 2018.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.