Abstract

Alzheimer’s disease (AD) and its related age at onset (AAO) are highly heterogeneous, due to the inherent complexity of the disease. They are affected by multiple factors, such as neuroimaging and genetic predisposition. Multimodal integration of various data types is necessary; however, it has been nontrivial due to the high dimensionality of each modality. We aimed to identify multimodal biomarkers of AAO in AD using an extended version of sparse canonical correlation analysis, in which we integrated two imaging modalities, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), and genetic data in the form of single-nucleotide polymorphisms (SNPs) obtained from the Alzheimer’s disease neuroimaging initiative database. These three modalities cover low-to-high-level complementary information and offer multiscale insights into the AAO. We identified multivariate markers of AAO in AD using fMRI, PET, and SNP. Furthermore, the markers identified were largely consistent with those reported in the existing literature. In particular, our serial mediation analysis suggests that genetic variants influence the AAO in AD by indirectly affecting brain connectivity by mediation of amyloid-beta protein accumulation, supporting a plausible path in existing research. Our approach provides comprehensive biomarkers related to AAO in AD and offers novel multimodal insights into AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.