Abstract
3D object detection, of which the goal is to obtain the 3D spatial structure information of the object, is a challenging topic in many visual perception systems, e.g., autonomous driving, augmented reality, and robot navigation. Most existing region proposal network (RPN) based 3D object detection methods generate anchors in the whole 3D searching space without using semantic information, which leads to the problem of inappropriate anchor size generation. To tackle the issue, we propose a 2D-guided precision anchor generation network (PAG-Net). Specifically speaking, we utilize a mature 2D detector to get 2D bounding boxes and category labels of objects as prior information. Then the 2D bounding boxes are projected into 3D frustum space for more precise and category-adaptive 3D anchors. Furthermore, current feature combination methods are early fusion, late fusion, and deep fusion, which only fuse features from high convolutional layers and ignore the data missing problem of point clouds. To obtain more efficient fusion of RGB images and point clouds features, we propose a multi-layer fusion model, which conducts nonlinear and iterative combinations of features from multiple convolutional layers and merges the global and local features effectively. We encode point cloud with the bird’s eye view (BEV) representation to solve the irregularity of point cloud. Experimental results show that our proposed approach improves the baseline by a large margin and outperforms most of the state-of-the-art methods on the KITTI object detection benchmark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.