Abstract

PurposeThe transition from linear to circular product systems is a big step for any organization. This may require an organization to change the way it does business, designs product and manages supply chain. As these three areas are interdependent, bringing change in one area will influence the others, for instance, changing the business model from conventional sales to leasing will demand changes in both product design and the supply chain. At the same time, it is essential for an organization to anticipate the economic and environmental impact of all changes before it may decide to implement the circular product systems. However, there is no tool available today that can assess economic and environmental performance of circular product systems. The purpose of this research is to develop a multi-method simulation based tool that can help to evaluate economic and environmental performance of circular product systems. MethodThe conceptual models that are used to develop the tool have been formulated based on review of the state-of-the-art research. System Dynamics (SD) and Agent Based (AB) principles have been used to create the simulation model which has been implemented in Anylogic software platform. OriginalityThis research presents the first multi-method simulation based tool that can evaluate economic and environmental performance of circular product systems. FindingsMulti-method simulation technique is useful in designing dynamic simulation model that takes into consideration mutual interactions among critical factors of business model, product design and supply chain. It also allows predicting system's behaviour and its influence on the economic and environmental performance of circular product systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.