Abstract

The new DO3A-derived dithiocarbamate ligand, DO3A-(t)Bu-CS2K, is formed by treatment of the ammonium salt [DO3A-(t)Bu]HBr with K2CO3 and carbon disulfide. DO3A-(t)Bu-CS2K reacts with the ruthenium complexes cis-[RuCl2(dppm)2] and [Ru(CH═CHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] (BTD = 2,1,3-benzothiadiazole) to yield [Ru(S2C-DO3A-(t)Bu)(dppm)2](+) and [Ru(CH═CHC6H4Me-4)(S2C-DO3A-(t)Bu)(CO)(PPh3)2], respectively. Similarly, the group 10 metal complexes [Pd(C,N-C6H4CH2NMe2)Cl]2 and [PtCl2(PPh3)2] form the dithiocarbamate compounds, [Pd(C,N-C6H4CH2NMe2)(S2C-DO3A-(t)Bu)] and [Pt(S2C-DO3A-(t)Bu)(PPh3)2](+), under the same conditions. The linear gold complexes [Au(S2C-DO3A-(t)Bu)(PR3)] are formed by reaction of [AuCl(PR3)] (R = Ph, Cy) with DO3A-(t)Bu-CS2K. However, on reaction with [AuCl(tht)] (tht = tetrahydrothiophene), the homoleptic digold complex [Au(S2C-DO3A-(t)Bu)]2 is formed. Further homoleptic examples, [M(S2C-DO3A-(t)Bu)2] (M = Ni, Cu) and [Co(S2C-DO3A-(t)Bu)3], are formed from treatment of NiCl2·6H2O, Cu(OAc)2, or Co(OAc)2, respectively, with DO3A-(t)Bu-CS2K. The molecular structure of [Ni(S2C-DO3A-(t)Bu)2] was determined crystallographically. The tert-butyl ester protecting groups of [M(S2C-DO3A-(t)Bu)2] (M = Ni, Cu) and [Co(S2C-DO3A-(t)Bu)3] are cleaved by trifluoroacetic acid to afford the carboxylic acid products, [M(S2C-DO3A)2] (M = Ni, Cu) and [Co(S2C-DO3A)3]. Complexation with Gd(III) salts yields trimetallic [M(S2C-DO3A-Gd)2] (M = Ni, Cu) and tetrametallic [Co(S2C-DO3A-Gd)3], with r(1) values of 11.5 (Co) and 11.0 (Cu) mM(-1) s(-1) per Gd center. DO3A-(t)Bu-CS2K can also be used to prepare gold nanoparticles, Au@S2C-DO3A-(t)Bu, by displacement of the surface units from citrate-stabilized nanoparticles. This material can be transformed into the carboxylic acid derivative Au@S2C-DO3A by treatment with trifluoroacetic acid. Complexation with Gd(OTf)3 or GdCl3 affords Au@S2C-DO3A-Gd with an r(1) value of 4.7 mM(-1) s(-1) per chelate and 1500 mM(-1) s(-1) per object.

Highlights

  • Incorporating more than one metal unit into the same covalent framework leads to great potential benefits, especially if the properties of the different metals are complementary

  • The infrared spectrum displayed absorptions assigned to the ester groups at 1721 and 1151 cm-1, as well as νC-N and two νC-S bands attributed to the dithiocarbamate moiety at 1453 and 990 and 969 cm-1, respectively. 1H NMR analysis of 1 revealed resonances for the CH2 protons in three separate multiplets between 2.33 and 6.40 ppm, while two singlets were observed for the distinct methyl environments at 1.45 and 1.47 ppm

  • We have demonstrated that ligand 1 can be prepared readily and in high yield, making it an excellent starting point for multimetallic compounds

Read more

Summary

Introduction

Incorporating more than one metal unit into the same covalent framework leads to great potential benefits, especially if the properties of the different metals are complementary. An abundant molecular ion was observed at m/z 1459 in the mass spectrum (Fast Atom Bombardment, positive mode) while elemental analysis data were in good agreement with calculated values for the proposed formulation.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.