Abstract

Production of immunogenic hepatitis C virus (HCV) envelope proteins will assist in the future development of preventive or therapeutics applications. Only properly folded monomeric E2 protein is able to bind a putative cellular co-receptor CD81, but this interaction may modulate cell immune function. Recombinant E2 proteins, similar to the native form, but lacking undesirable immunoregulatory features, might be promising components of vaccine candidates against HCV. To obtain E2 suitable for structural as well as functional studies, a recombinant E2 variant (E2680) was produced in Pichia pastoris cells. E2680, comprising amino acids 384 to 680 of the HCV polyprotein, was secreted into the culture supernatant in the N-glycosilated form and was mainly composed of disulfide-linked multimers. Both monomeric and oligomeric forms of E2680 were recognized by conformational-sensitive MAb H53. In addition, antibodies in sera from 70% of HCVpositive patients were reactive against E2680. By immunizing E2680 in BALB/c mice, both a specific cellular immune response and anti-E2680 IgG antibody titers of 1:200,000 were induced. Our data suggest that recombinant E2680 could be useful to successfully induce strong anti-HCV immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call