Abstract
A number of studies have been conducted on topic modeling for various types of data, including text and image data. We focus particularly on the burstiness of the local features in modeling topics within video data in this paper. Burstiness is a phenomenon that is often discussed for text data. The idea is that if a word is used once in a document, it is more likely to be used again within the document. It is also observed in video data; for example, an object or visual word in video data is more likely to appear repeatedly within the same video data. Based on the idea mentioned above, we propose a new topic model, the Correspondence Dirichlet Compound Multinomial LDA (Corr-DCMLDA), which takes into account the burstiness of the local features in video data. The unknown parameters and latent variables in the model are estimated by conducting a collapsed Gibbs sampling and the hyperparameters are estimated by focusing on the fixed-point iterations. We demonstrate through experimentation on the genre classification of social video data that our model works more effectively than several baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.