Abstract
With the rapid development of mobile communication, multimedia services have experienced explosive growth in the last few years. The high quantity of mobile users, both consuming and producing these services to and from the Cloud Computing (CC), can outpace the available bandwidth capacity. Fog Computing (FG) presents itself as a solution to improve on this and other issues. With a reduction in network latency, real-time applications benefit from improved response time and greater overall user experience. Taking this into account, the main goal of this work is threefold. Firstly, it is proposed a method to build an environment based on Cloud–Fog Computing (CFC). Secondly, it is designed two models based on Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM). The goal is to predict demand and reserve the nodes’ storage capacity to improve the positioning of multimedia services. Later, an algorithm for the multimedia service placement problem which is aware of data traffic prediction is proposed. The goal is to select the minimum number of nodes, considering their hardware capacities for providing multimedia services in such a way that the latency for servicing all the demands is minimized. An evaluation with actual data showed that the proposed algorithm selects the nodes closer to the user to meet their demands. This improves the services delivered to end-users and enhances the deployed network to mitigate provider costs. Moreover, reduce the demand to Cloud allowing turning off servers in the data center not to waste energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.