Abstract
Mediation analysis has emerged as a versatile tool for answering mechanistic questions in microbiome research because it provides a statistical framework for attributing treatment effects to alternative causal pathways. Using a series of linked regressions, this analysis quantifies how complementary data relate to one another and respond to treatments. Despite these advances, existing software's rigid assumptions often result in users viewing mediation analysis as a black box. We designed the multimedia R package to make advanced mediation analysis techniques accessible, ensuring that statistical components are interpretable and adaptable. The package provides a uniform interface to direct and indirect effect estimation, synthetic null hypothesis testing, bootstrap confidence interval construction, and sensitivity analysis, enabling experimentation with various mediator and outcome models while maintaining a simple overall workflow. The software includes modules for regularized linear, compositional, random forest, hierarchical, and hurdle modeling, making it well-suited to microbiome data. We illustrate the package through two case studies. The first re-analyzes a study of the microbiome and metabolome of Inflammatory Bowel Disease patients, uncovering potential mechanistic interactions between the microbiome and disease-associated metabolites, not found in the original study. The second analyzes new data about the influence of mindfulness practice on the microbiome. The mediation analysis highlights shifts in taxa previously associated with depression that cannot be explained indirectly by diet or sleep behaviors alone. A gallery of examples and further documentation can be found at https://go.wisc.edu/830110.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.