Abstract

Due to the widespread consumption of antibiotics by humans and animals, antibiotic residues from human and animal excrements are released into the environment through domestic sewage and breeding wastewater, which ultimately affect the ecological environment and human health. In this study, the concentrations of 10 antibiotics in the air, water, soil, and sediment from 2013 to 2019 in Qingpu District of the integrated demonstration zone of the Yangtze River Delta were predicated by developing a dynamic Level IV fugacity model. The influence of seasonal environmental factors (e.g., temperature, rainfall) on the distribution and migration of antibiotics in multi-media was also explored. The simulation results show that the 10 antibiotics mainly existed in water and sediment. The concentrations of antibiotics in air, water, soil, and sediment were 0–7.629 × 10−14 ng/L, 1.187 × 10−10-16.793 ng/L, 1.042 × 10−14-3.500 × 10−11 ng/g and 8.015 × 10−12-14.188 ng/g, respectively. It was also found that the increase in temperature and rainfall can reduce the migration rate of some antibiotics into the water and sediment phases. The flux analysis of the cross-media migration and transformation of antibiotics in Qingpu District shows that advection was the prime input and output paths of antibiotics in the water. Moreover, the prime input and output paths of antibiotics in sediment were sedimentation from water to sediment and degradation. Sensitivity analysis shows that the characteristics of antibiotic emission, degradation rate, and Koc were the most influential parameters for target chemicals. The results of risk assessment based on Monte Carlo method reveal that the overall risk level of antibiotics in sediment was relatively risk-free, and the risk of antibiotics in water decreased in the order of tetracyclines > β-lactams > fluoroquinolones > macrolides > sulfonamides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.