Abstract
Legacy and emerging PFAS in the air, wastewater, and sludge from two wastewater treatment plants (WWTPs) in Tianjin were investigated in this study. The semi-quantified nontarget PFAS accounted for up to 99 % of ƩPFAS in the gas phase, and aqueous film-forming foam (AFFF)-related PFAS were predominant in wastewater (up to 2250 ng/L, 79 % of ƩPFAS) and sludge (up to 4690 ng/g, 95 % of ƩPFAS). Furthermore, field-derived air particle-gas, air-wastewater, and wastewater particle-wastewater distribution coefficients of emerging PFAS are characterized, which have rarely been reported. The emerging substitute p-perfluorous nonenoxybenzenesulfonate (OBS) and AFFF-related cationic and zwitterionic PFAS show a stronger tendency to partition into particle phase in air and wastewater than perfluorooctane sulfonic acid (PFOS). The estimated total PFAS emissions from the effluent and sludge of WWTP A were 202 kg/y and 351 kg/y, respectively. While the target PFAS only accounted for 20–33 % of the total emissions, suggesting a significant underestimation of environmental releases of the nontarget PFAS and unknown perfluoroalkyl acid precursors through the wastewater and sludge disposal. Overall, this study highlights the importance of comprehensive monitoring and understanding the behavior of legacy and emerging PFAS in wastewater systems, and fills a critical gap in our understanding of PFAS exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.