Abstract
Only a subset of cancer patients inoculated with oncolytic herpes simplex virus (oHSV) type-1 has shown objective response in phase 1 and 2 clinical trials. This has raised speculations whether resistance of tumor cells to oHSV therapy may be a limiting factor. In this study, we have identified established and patient derived primary glioblastoma multiforme (GBM) stem cell lines (GSC) resistant to oHSV and also to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that has recently shown promise in preclinical and initial clinical studies. We created a recombinant oHSV bearing a secretable TRAIL (oHSV-TRAIL) and hypothesized that oHSV-TRAIL could be used as a cancer therapeutic to target a broad spectrum of resistant tumors in a mechanism-based manner. Using the identified resistant GBM lines, we show that oHSV-TRAIL downregulates extracellular signal-regulated protein kinase (ERK)-mitogen-activated protein kinase (MAPK) and upregulates c-Jun N-terminal kinase (JNK) and p38-MAPK signaling, which primes resistant GBM cells to apoptosis via activation of caspase-8, -9, and -3. We further show that oHSV-TRAIL inhibits tumor growth and invasiveness and increases survival of mice bearing resistant intracerebral tumors without affecting the normal tissues. This study sheds new light on the mechanism by which oHSV and TRAIL function in concert to overcome therapeutic-resistance, and provides an oncolytic virus based platform to target a broad spectrum of different cancer types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.