Abstract

Laser-based direct energy deposition (L-DED) with blown powder enables the simultaneous or sequential processing of different powder materials within one component and, thus, offers the possibility of additive multimaterial manufacturing. Therefore, the process allows a spatially resolved material allocation and fabrication of sharp or even graded material transitions. Within this contribution, the latest results from two major research fields in multimaterial L-DED—(I) automation and (II) rapid alloy development of high entropy alloys (HEAs) by in situ synthesis—shall be presented. First, an automated multimaterial deposition process was developed, which enables the automated manufacturing of three-dimensionally graded specimens. For this, a characterization of the deposition system regarding powder feeding dynamics and resulting powder mixtures in the process zone was conducted. The obtained system characteristics were used to achieve a three-dimensional deposition of specified powder mixtures. The fabricated specimens were analyzed by energy-dispersive x-ray spectroscopy, scanning electron microscopy, and micro hardness measurement. The research demonstrates the increasing readiness of L-DED for the fabrication of multimaterial components. Second, the latest results from rapid alloy development for HEAs by DED are presented. By the simultaneous usage of up to four powder feeders, a vast range of alloy compositions within the Al–Ti–Co–Cr–Fe–Ni HEA system was investigated. For this, tailored measurement systems such as an in-house developed powder sensor were beneficially used. The study shows the influence of a variation of Al on the phase formation and resulting mechanical properties and demonstrates the potential of L-DED for reducing development times for new alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.