Abstract
Beam hardening (BH) is one of the major artifacts that severely reduces the quality of computed tomography (CT) imaging. This BH artifact arises due to the polychromatic nature of the X-ray source and causes cupping and streak artifacts. This work aims to propose a fast and accurate BH correction method that requires no prior knowledge of the materials and corrects first and higher-order BH artifacts. This is achieved by performing a wide sweep of the material based on an experimentally measured look-up table to obtain the closest estimate of the material. Then, the non-linearity effect of the BH is corrected by adding the difference between the estimated monochromatic and the polychromatic simulated projections of the segmented image. The estimated polychromatic projection is accurately derived using the least square estimation (LSE) method by minimizing the difference between the experimental projection and the linear combination of simulated polychromatic projections. As a result, an accurate non-linearity correction term is derived that leads to an accurate BH correction result. The simulated projections in this work are performed using a multi-GPU-accelerated forward projection model which ensures a fast BH correction in near real-time. To evaluate the proposed BH correction method, we have conducted extensive experiments on real-world CT data. It is shown that the proposed method results in images with improved contrast-to-noise ratio (CNR) in comparison to the images corrected from only the scatter artifacts and the BH-corrected images using the state-of-the-art empirical BH correction method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.