Abstract

This article presents a new approach for finding the optimal multimarket trading strategy of cascaded hydropower plants (HPPs) in the sequential electricity markets. These markets are day-ahead energy market, the market for frequency containment reserve in normal mode (FCR-N), and manual frequency restoration reserve markets for both energy production and capacity reserve. The active-time duration (ATD) of an mFRR energy offer is an important required parameter and it is uncertain at the time of day-ahead offer-function submission. Hence, we suggest a distributional regression approach for ATD modeling in an optimal multimarket setup. Also, a modified machine learning approach is proposed to generate price scenarios for the mFRR energy market taking into account uncertain ATD parameters. To illustrate our proposed approach, various numerical experiments are performed. Our numerical results show how proper modeling of ATD parameters can lead to a more realistic multimarket offer-function for cascaded HPPs. Furthermore, the results show how the inclusion of FCR-N and mFRR capacity markets change the optimal day-ahead offer-function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.