Abstract

AimsThe exploration of novel immunomodulatory interventions to improve outcome in heart failure (HF) is hampered by the complexity/redundancies of inflammatory pathways, which remain poorly understood. We thus aimed to investigate the associations between the activation of diverse immune processes and outcomes in patients with HF.Methods and resultsWe measured 355 biomarkers in 2022 patients with worsening HF and an independent validation cohort (n = 1691) (BIOSTAT-CHF index and validation cohorts), and classified them according to their functions into biological processes based on the gene ontology classification. Principal component analyses were used to extract weighted scores per process. We investigated the association of these processes with all-cause mortality at 2-year follow-up. The contribution of each biomarker to the weighted score(s) of the processes was used to identify potential therapeutic targets. Mean age was 69 (±12.0) years and 537 (27%) patients were women. We identified 64 unique overrepresented immune-related processes representing 188 of 355 biomarkers. Of these processes, 19 were associated with all-cause mortality (10 positively and 9 negatively). Increased activation of ‘T-cell costimulation’ and ‘response to interferon-gamma/positive regulation of interferon-gamma production’ showed the most consistent positive and negative associations with all-cause mortality, respectively, after external validation. Within T-cell costimulation, inducible costimulator ligand, CD28, CD70, and tumour necrosis factor superfamily member-14 were identified as potential therapeutic targets.ConclusionsWe demonstrate the divergent protective and harmful effects of different immune processes in HF and suggest novel therapeutic targets. These findings constitute a rich knowledge base for informing future studies of inflammation in HF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.