Abstract

Monotonicity and convex analysis arise naturally in the framework of multi-marginal optimal transport theory. However, a comprehensive multi-marginal monotonicity and convex analysis theory is still missing. To this end we study extensions of classical monotone operator theory and convex analysis into the multi-marginal setting. We characterize multi-marginal c-monotonicity in terms of classical monotonicity and firmly nonexpansive mappings. We provide Minty type, continuity and conjugacy criteria for multi-marginal maximal monotonicity. We extend the partition of the identity into a sum of firmly nonexpansive mappings and Moreau's decomposition of the quadratic function into envelopes and proximal mappings into the multi-marginal settings. We illustrate our discussion with examples and provide applications for the determination of multi-marginal maximal monotonicity and multi-marginal conjugacy. We also point out several open questions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.