Abstract

Amoebiasis caused by protozoan parasite Entamoeba histolytica has diverse infection outcomes. The relationship between parasite genotypes and outcome of amoebic infection is still a paradox and needs to be explored. Genome information of infecting strains from endemic areas throughout the world is essential to explore this relation. Comparative genetics between E. histolytica populations from different disease outcomes have been studied to identify potential genetic markers having single nucleotide polymorphisms (SNPs) significantly associated with specific clinical outcome. Coding and non-coding regions have significantly different rates of polymorphism. Non-synonymous base substitutions were significantly more frequent than synonymous within coding loci. Both synonymous and non-synonymous SNPs within lysine- and glutamic acid rich protein 2 (kerp2) locus were significantly associated with disease outcomes. An incomplete linkage disequilibrium (LD) value with potential recombination events and significant population differentiation (FST) value have also been identified at kerp2 locus within the study population. Presence of disease specific SNPs, potential recombination events, and significant FST value at kerp2 locus indicate that kerp2 gene and its gene product are under constant selection pressure exerted by host on parasite and could also be a potential determinant of disease outcome of E. histolytica infection. Furthermore, E. histolytica isolated from asymptomatic carriers are phylogenetically closer to those causing liver abscess in human and exhibit potential inter-population recombination among them. Individuals with persistent asymptomatic E. histolytica infection may be under high risk of developing amoebic liver abscess formation in future and detailed investigation of asymptomatic individuals from endemic areas should be always required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call