Abstract

BackgroundBeta-lactam resistance in Haemophilus influenzae due to ftsI mutations causing altered penicillin-binding protein 3 (PBP3) is increasing worldwide. Low-level resistant isolates with the N526K substitution (group II low-rPBP3) predominate in most geographical regions, while high-level resistant isolates with the additional S385T substitution (group III high-rPBP3) are common in Japan and South Korea.Knowledge about the molecular epidemiology of rPBP3 strains is limited. We combined multilocus sequence typing (MLST) and ftsI/PBP3 typing to study the emergence and spread of rPBP3 in nontypeable H. influenzae (NTHi) in Norway.ResultsThe prevalence of rPBP3 in a population of 795 eye, ear and respiratory isolates (99% NTHi) from 2007 was 15%. The prevalence of clinical PBP3-mediated resistance to ampicillin was 9%, compared to 2.5% three years earlier. Group II low-rPBP3 predominated (96%), with significant proportions of isolates non-susceptible to cefotaxime (6%) and meropenem (20%). Group III high-rPBP3 was identified for the first time in Northern Europe.Four MLST sequence types (ST) with characteristic, highly diverging ftsI alleles accounted for 61% of the rPBP3 isolates. The most prevalent substitution pattern (PBP3 type A) was present in 41% of rPBP3 isolates, mainly carried by ST367 and ST14. Several unrelated STs possessed identical copies of the ftsI allele encoding PBP3 type A.Infection sites, age groups, hospitalization rates and rPBP3 frequencies differed between STs and phylogenetic groups.ConclusionsThis study is the first to link ftsI alleles to STs in H. influenzae. The results indicate that horizontal gene transfer contributes to the emergence of rPBP3 by phylogeny restricted transformation.Clonally related virulent rPBP3 strains are widely disseminated and high-level resistant isolates emerge in new geographical regions, threatening current empiric antibiotic treatment. The need of continuous monitoring of beta-lactam susceptibility and a global system for molecular surveillance of rPBP3 strains is underlined. Combining MLST and ftsI/PBP3 typing is a powerful tool for this purpose.

Highlights

  • Beta-lactam resistance in Haemophilus influenzae due to ftsI mutations causing altered penicillin-binding protein 3 (PBP3) is increasing worldwide

  • Eighteen PBP3 substitution patterns were present in PBP3mediated resistance present (rPBP3) isolates, with PBP3 types A, B and D accounting for 72% (84/116) and PBP3 type A alone accounting for 41% (48/116)

  • The prevalence of rPBP3 in H. influenzae is increasing worldwide, and high-level resistant strains are emerging in new geographic regions

Read more

Summary

Introduction

Beta-lactam resistance in Haemophilus influenzae due to ftsI mutations causing altered penicillin-binding protein 3 (PBP3) is increasing worldwide. Haemophilus influenzae is a major cause of respiratory tract infections and invasive disease, with encapsulated strains of serotype b (Hib) being most virulent [1]. Beta-lactams are first-line drugs for treatment of H. influenzae infections but resistance may develop due to transferable beta-lactamases (impacting penicillins only) or alterations in the transpeptidase domain of penicillinbinding protein 3 (PBP3), encoded by the ftsI gene (impacting all beta-lactams) [6]. Isolates with the latter resistance mechanism have been denoted beta-lactamase negative ampicillin resistant (BLNAR), whereas isolates with both mechanisms have been denoted beta-lactamase positive amoxicillin-clavulanate resistant (BLPACR). PBP3-mediated resistance is defined by the presence of particular amino acid substitutions (Table 1): R517H or N526K near the KTG motif in low-level resistant isolates (groups I and II, respectively), and the additional substitution S385T near the SSN motif in highlevel resistant isolates (group III-like, S385T + R517H; group III, S385T + N526K) [7,8,9,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call