Abstract
Analyzing real-time news feeds and their impacts in the real world is a complex task in the social networking arena. Particularly, countries with a multilingual environment have various patterns and perceptions of news reports considering the diversity of the people. Multilingual and multimodal news analysis is an emerging trend for evaluating news source neutralities. Therefore, in this work, four new deep news particle filtering techniques were developed, including generic news analysis, sequential importance re-sampling (SIR) -based news particle filtering analysis, reinforcement learning (RL) -based multimodal news analysis, and deep Convolution neural network (DCNN) -based multi-news filtering approach, for news classification. Results indicate that these techniques, which primarily employ particle filtering with multilevel sampling strategies, produce 15% to 20% better performance than conventional news analysis techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.