Abstract

ABSTRACT Pattern recognition of linear feature sets, such as river networks, road networks, and contour clusters, is essential in cartography and geographic information science. Previous studies have investigated many methods to identify the patterns of linear feature sets; the key to each of these studies is to generate a reasonable and computable representation for each set. However, most existing methods are only designed for a specific task or data type and cannot provide a general solution for formalizing linear feature sets owing to their complex geometric characteristics, spatial relations and distributions. In addition, some methods require human involvement to specify characteristics, choose parameters, and determine the weights of different measures. To reduce human intervention and improve adaptability to various feature types, this paper proposes a novel deep learning architecture for learning the representations of linear feature sets. The presented model accepts vector data directly without extra data conversion and feature extraction. After generating local, neighborhood, and global representations of inputs, the representations are aggregated accordingly to perform pattern recognition tasks, including classification and segmentation. In the experiments, building groups classification and road interchanges segmentation achieved accuracies of 98% and 89%, respectively, indicating the model’s effectiveness and adaptability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call