Abstract

Magnetic reconnection in the lower atmosphere is a critical process in determining the chromospheric dynamics, such as Ellerman bombs and UV bursts. Because the heating of the atmosphere significantly depends on the ionization degree and plasma β, which varies with height, it is essential to diagnose the height at which the magnetic reconnection takes place. Multiwavelength spectropolarimetry is a powerful solution to fulfill this requirement. We verify the diagnostic capabilities and usefulness of near-infrared multiwavelength spectropolarimetric observations for understanding magnetic reconnection phenomena by synthesizing the Stokes vector from a realistic magnetohydrodynamic simulation. The analysis considers two magnetic reconnection regions occurring at different heights. In the case of magnetic reconnection at low altitude, both red- and blueshifted components originating from reconnection bidirectional flow are identified in the photospheric lines, Fe i 8468 Å, K i 7664 Å, and K i 7698 Å. In the case of magnetic reconnection at high altitudes, chromospheric lines, Ca ii 8498 Å and 8542 Å, show emission due to the heating that occurs at the upper part of the formation layer. These results suggest that multiwavelength spectropolarimetric observations are capable of distinguishing the height where magnetic reconnection occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.