Abstract

As an implantable material, carbon-fiber-reinforced polyetheretherketone (CFRPEEK) possesses an adjustable elastic modulus similar to that of cortical bone and is a prime candidate to replace metallic surgical implants. However, the bioinertness and poor osteogenic properties of CFRPEEK limit its clinical application as orthopedic implants. In this work, titanium ions are introduced energetically into CFRPEEK by plasma immersion ion implantation (PIII). Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) reveal the formation of nanopores with the side wall and bottom embedded with ∼20 nm TiO2 nanoparticles on the CFRPEEK surface. Nanoindentation measurements confirm the stability and improved elastic resistance of the structured surfaces. In vitro cell adhesion, viability assay, and real-time PCR analyses disclose enhanced adhesion, proliferation, and osteo-differentiation of rat bone mesenchymal stem cells (bMSCs). The multilevel structures on CFRPEEK also exhibit partial antibacterial activity to Staphylococcus aureus and Escherichia coli. Our results indicate that a surface with multifunctional biological properties can be produced by multilevel surface engineering and application of CFRPEEK to orthopedic and dental implants can be broadened and expedited based on this scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.