Abstract

As the technology shrinks, nonfunctional properties (NFPs) such as reliability, vulnerability, power consumption, or heat dissipation become as important as system functionality. As NFPs often influence each other, depend on the application and workload of a system, and exhibit nonlinear behavior, NFP simulation over long periods of system operation is computationally expensive, if feasible at all. This article presents a piecewise evaluation method for efficient NFP simulation. Simulation time is divided into intervals called evaluation windows , within which the NFP models are partially linearized. High-speed functional system simulation is achieved by parallel execution of models at different levels of abstraction. A trade-off between simulation speed and accuracy is met by adjusting the size of the evaluation window. As an example, the piecewise evaluation technique is applied to analyze aging caused by two mechanisms, namely Negative Bias Temperature Instability (NBTI) and Hot Carrier Injection (HCI), in order to identify reliability hotspots. Experiments show that the proposed technique yields considerable simulation speedup at a marginal loss of accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.